Wednesday, December 21, 2016

Project: The Self-Driving Car

We've recently reported on the Advanced Engineering I playground design project, but what exactly is keeping the younger group busy right now? If you pass by Room 401 most any afternoon, you'll find twelve freshmen and sophomores, six computers, three VEX robotics sets, two T.A.s, and one teacher very hard at work! The project? It's a little ambitious, but we are intending to design, build, and program three self-driving robot cars, in the manner of Google, Uber, Tesla, and a few others.

Just another typical day of class in the Providence Engineering Academy

The way of the future! But first a bit of background. Robotic cars fall into two broad categories: smart cars and smart roads. Smart car systems have all of the design and engineering and intelligence in the car itself, relying on GPS, lots of sensors, and careful programming. By contrast, smart road systems have some sort of marker built into the road itself to provide information to the car--one idea proposed in the past was to have magnets embedded into the road surface. While all companies are now putting all of their efforts into the "smart car" option, ours fall into the "smart road" category; we have a white line track on a dark background that shows the car where it needs to go. No white line means no navigation.

Left: the design brief and the plans for the roadway; right: the actual roadway,
newly constructed, mounted on an 8 foot by 8 foot plywood base

So what does it take to get this going? The number one resource is human intelligence; each of the three teams comprises four students, with distinct roles as follows:
  • Team Leader: co-ordinate efforts, give attention wherever needed, be an all-around expert in everything, and keep a daily Captain's Log.
  • Mechanical Engineer: primarily responsible for building the physical structure of the robot, mounting sensors, and attaching custom parts.
  • Programmer: working on code that will navigate the robot around the course.
  • CAD Specialist: design custom parts in a CAD program, and then print them out for use in actuality.
The beauty of this is that each member necessarily must work together with the others to achieve the outcome. The mechanical engineer needs input from the programmer as to where to place the sensors so that they work with the written code. The CAD specialist needs to also work with the mechanical engineer to decide what is most needed and where it should be placed. The team leader needs to choose just how to spread themselves each day to get the current priorities in order.

Ben (left) working on code; David (center) attaching his wheels to the frame

Samy, one of the mechanical engineers, putting together a frame for his
team's vehicle

Each team was allowed to choose between two types of steering design: rack and pinion, or a simpler design where the entire wheel and axle rotates around a central pivot. All three teams went for the rack and pinion, which is the same design found on modern cars. A single gear (the "pinion") rotates on a flat linear gear (the "rack"), which pushes it left or right, in turn causing the front wheels to point in either direction.

The custom CAD parts are another particularly exciting part of this project: the three CAD specialists are using the online platform Onshape to make pieces that are specific to their own robot. Just for fun, one team created a license plate with their team name, which is now proudly mounted on the front. Two teams are currently working on a box to hold a payload to be delivered along the route. The third team created a "shadow shield" to go underneath the vehicle and keep the line-sensing infrared sensors out of direct sunlight to make them more effective. The CAD specialists had to create bolt holes that match with the VEX robotics system, and they have infinite control over everything else.

One team's container design, intended to hold a small payload; a door is going
to be added to keep things secure until delivery

Another team's payload device is an open tray which flips up to release
upon command; note the square axle hole for connection to the motor

Both of the above designs are printed full size; so far, it looks like they will
be perfect!

The teams have another couple of weeks to finish this project, and they look to be on schedule for completion and demonstration.

Mr Meadth also decided that it would be fair for him to produce a proof of concept--can this really be done, after all? He used one of the spare middle school LEGO sets, which has an array of similar sensors and mechanical capability, but a very different coding language.

LEGO Mindstorms coding language--colourful blocks that snap together!

RobotC coding language, as used by the high school students--lines
and lines of colour-coded text

After a few hours of work, he came up with this smaller LEGO version, and it gets around the full track in about 18 seconds on its slowest, most cautious speed.

The LEGO robot car in action--note the three colour sensors in a bank on the
front; having three side-by-side allows for more sensitivity in response to the
car's exact position



Proof positive--it can be done! Upon completion, the robots will be demonstrated to the Providence community; we may go down to Lower Campus and show one of the elementary grades what we've done. Stay tuned.

Friday, December 9, 2016

Visit to UCSB Mechanical Engineering Department

On Monday of this week, sixteen Providence teachers and students took a trip out to UCSB, to visit the Mechanical Engineering department. Kirk Fields, Senior Development Engineer, met the group there and gave a tour of a few of the lab spaces.

The "clean room" was the first stop, and we noted that this is where Sarah Jane's father works to assemble his company's tiny lasers. We didn't see him through the window, but there were many interesting microscopic images of gecko feet!

The materials testing lab tied in well to what we have recently studied with our older group, Advanced Engineering I. Our students have been testing various materials in compression, carefully measuring the loads required to produce deflection, and deducing the modulus of elasticity--in layman's terms, a measure of how "springy" a substance is. This UCSB lab held dozens of industrial-grade machines to do similar experiments in compression, tension, fatigue, and so on.

Kirk (right) shows us the materials testing lab

Kirk was also able to show us a special research project, which involved a Perspex beam that "pushes back" when it a load is applied. Ordinarily, pushing on a beam would make it bend downwards, but this beam is equipped with sensors and motors that resist the action; this creates a beam with "infinite stiffness", so to speak.


The beam of "infinite stiffness" reacts and pushes back against applied load

We walked through some other spaces (including the wind tunnel), ending up in a robotics lab that housed an in-house competition much like what we do in our own middle school and high school classes. The college students design robots using a variety of motors, sensors, and LEGO structures; the robots ("rats") run around a walled-in elevated platform and collect "cheese".

One of the "rats" from last year is on display in the central case

The visit, though short, was well worthwhile. Jake, our senior, recently applied to this college and this department, so he was glad to meet some people and get a firsthand look. Mr Hurt, also present, graduated from this campus, and happily reminisced about times past.

All in all, a positive experience, and we're grateful to UCSB and Kirk Fields for allowing us the chance to come by!

Tuesday, December 6, 2016

Upcoming Event: MS Final Challenge!

In the Providence Middle School, fourteen 7th and 8th Graders are working busily on their capstone project for the semester: the Intro to Engineering Final Challenge! Every semester, the students in this elective are given a game-style challenge to complete, which involves designing, building, and programming a robot using LEGO Mindstorms EV3 sets.

This semester's challenge is being played out on a large elevated plywood platform, 8 ft by 8 ft. Mr Meadth spent a happy few hours putting this together in the science lab.


Each team of two students must create a robot that can sweep the platform clear of various pieces of coloured "debris"; imagine a small robot whose task is to permanently keep a rooftop helipad clear of windblown trash. Two robots are running in each round simultaneously, and whoever pushes off the most debris wins.


Special note: the pieces of "debris" we are using are the game pieces designed by Eva last year for her high school Educational Design project! Naturally, they are printed on our mod-T printers, which are still running strong (and now only $299 on their website!).

There are significant challenges associated with this project. How do you keep the robot from falling off the edge of the platform? How do you actually have the robot find the scattered debris? Does it run a blind search pattern, or does it try to use sensors to actively search? What kind of locomotive means does it use? Tracks or wheels or something else? What if it bumps into another robot?

Let's introduce our competitors this semester:

Isabela and Lily with their wheeled wonder--note the absence of rubber tires
on the front wheels to allow sideways slippage when turning

Christine and Sofi with their light and fast Pretzel Bot

James and Dylan with an imposing bulldozer--note the ultrasonic sensor on the
front to look for debris

Zach and Alan also went with a tracked design, and a large superstructure on
top for style points!

Ma.kaha and Cameron put their colour sensor way out in front to detect the edge
of the table--not falling off the table is critical to success!

Asher and Sam have an armoured design that looks just plain scary

Masato and Isaiah did some late redesign work to try to bring down their weight--
the robot with a lower weight gets the advantage of being placed first

The students will be presenting their completed designs to the rest of the class this Friday. The actual competition will take place in the Boys & Girls Club gymnasium on Monday and Tuesday at 1:00 during regular class time. Parents and friends are welcome, and it promises to be a lot of high energy fun!

Wednesday, November 16, 2016

Scott Kelly at the Granada

Some of our readers might be aware of the historic experience of Captain Scott Kelly, the American astronaut who spent approximately a year on the International Space Station. Captain Kelly carried out over 400 scientific experiments in his time in orbit, did several spacewalks, and took hundreds of incredible photos. Since his return, he has toured round to various locations and shared about his experiences.

Providence has three Scotts of its own, and one of them--Dr. Scott Lisea--reached out to the Engineering Academy to invite some of the top students to attend one of Captain Kelly's presentations at the Granada. Jake and Kylie accepted the invitation with pleasure, and Mr. Meadth came along as well.

Captain Kelly was good enough to pose with Kylie and Jake
for a quick photo after the event


Scott Kelly was warm, engaging, and full of good humor. He described how he lacked motivation and discipline during his elementary and secondary schooling, and that his outlook changed when he read the stories of earlier NASA astronauts. He encouraged the audience to do what any good astronaut does: ignore the things they can't change, and focus on what they can. He described the physical and psychological challenges of living in an isolated structure for so long, and how he gained a strong friendship with his Russian cosmonaut partners.

Thanks again to Dr. Lisea for providing this special opportunity for our students, and thanks to Captain Kelly for setting a strong example of leadership and persistence.

Tuesday, November 8, 2016

Guest Speaker: Nathan Gates

Last Friday, our Foundations of Engineering II group was privileged to hear from retired aerospace engineer Dr. Nathan Gates. Dr. Gates has worked for many years at Astro Aerospace, based in Carpinteria, and is recently retired.

Dr Gates shows a telescoping boom design that he worked on

Dr. Gates' impressive career was mainly focused on thin, light, graphite structures, such as those used on spacecraft and satellites. His specialty was "deployable" structures, which are launched in a folded-up configuration and then unpackage once in orbit. One recent project will unfold over two weeks to the size of a tennis court, despite being launched in a payload cylinder only a few meters wide.

Students eagerly listening to tales of projects past!

Dr. Gates ended his stories with a memorable reference to Eric Liddell, the Scottish Olympic athlete, who famously stated "when I run, I feel His pleasure." Dr. Gates has worked for years in the aerospace industry to the best of his ability, designing and creating in imitation of the Great Creator, feeling His pleasure, and living Coram Deobefore the face of God. Our students would do well to take heed.

We are very grateful to Dr. Nathan Gates for sharing with us, and hope to have him again soon!

Wednesday, October 26, 2016

Grant Awarded: EnergyPartners Fund

As part of their Community Design Project, the six members of the Advanced Engineering I class worked jointly on a grant request to a local organization, the EnergyPartners Fund. This grant, totaling $1,500, was aimed at purchasing the necessary raw materials and tools for actually building the planned play structure.

Just to be clear, it was Jake, Caleb, Tys, Aaron, Sarah Jane, and Kylie who were tasked with writing this grantno teachers involved! Three teams of two drafted three separate grant requests, and then Mr Meadth took the best answers for each question and collated them into one official proposal.

We won't leave you in suspense... the grant request was accepted by the EnergyPartners Fund in full! Tys volunteered to travel up to Santa Maria with Mr and Mrs Meadth, and accept the award in person at the stylish Presqu'ile Winery.

Mr Meadth and Tys in front of the EnergyPartners Fund sponsor sign

The simple ceremony showcased a variety of STEM education projects happening around Santa Barbara county. Students from local schools are working on VEX robots just as we are, and the nearly-open downtown MOXI museum received funds for professional-grade 3D printers (this museum will be a possible service opportunity for our own students). We also met with a representative of the Maritime Museum, and learned about their interesting historical education programs. And if you haven't heard of Riviera Robotics, the local robotics team run entirely by students, you should check them out; two of their members were present to receive their award.

All in all, lots of great connections, and we are very grateful to the many sponsors of the EnergyPartners Fund for promoting the work we are doing! Thanks once again to the talented students who represented Providence in such a convincing way.

Monday, October 17, 2016

Bridges, Cranes, Robots

After some humble beginnings to the semester (Newton's Laws, basic structural mechanics, and gear ratios), we have had a string of exciting projects in our middle school engineering elective. Within the last few weeks, students have built railway bridges, designed high-torque crane systems, and are now writing code for simple three-wheeled robots.

Mr Meadth stands watch over the first train journey of the day--all is well!

The Bridge Challenge had students demonstrate their understanding of structural rigidity. The students were told that triangular structures are inherently rigid, and can't change shape without breaking. They also identified the bridge as being primarily subject to bending loads, in which case it is best to build a bridge that is tall.

(For all you engineers out there, they learned to use a cross-section with a high second moment of area!)

Another bridge with an underslung truss system


Asher and Christine carefully plan out their triangular structures

From here, we looked at the interplay between torque and rotational speed. Anyone who has ridden a bike with gears or driven a manual shift car understands that different gear arrangements really do produce a change in outcome--you shift down gears to pedal up a steep hill. Our middle school students calculated various gear ratios, and also felt the hands-on difference, thanks to Jake's Educational Design project from last year.

Zach and Isaiah feel the increase/decrease in torque for a 3:1 ratio

The lessons in gears were put to the test in the Crane Challenge, where students used the EV3 Medium Motor to raise as much weight as possible. The structure had to be strong enough to hold the weight (think triangles and rigidity again), and the gear ratios had to be reduced down one or two or even three times. Bottom line: a slower crane is a stronger crane!

Zach and Sam added a few "characters" to their
impressive submission, and were able to
raise 800 grams (almost 2 lb)


Lily and Isabela and "The Giraffe"; they raised
a total of 300 grams


Currently, students are working with a basic robot called the "Robot Educator". This three-wheeled design is built from instructions, and is for the purpose of learning basic programming skills. The students are learning to tell the robot to move forward/backward, turn around, raise and lower its front trap, and make noises. They are also finding out about loops and conditions and switches, which help make programs more sophisticated. All of this experience will be used later in the semester as the teams design, build, and program their own robot.

Seven Robot Educators, lined up and ready for action!

More to come, so stay tuned!

Friday, September 23, 2016

Robots and Steel

We had two exciting experiences recently in the high school Academy. Firstly, in the 9th/10th Grade Foundations of Engineering group, we decided to take a break from the rigours of trigonometry to see some robotics in action. Scott Gary, a Providence parent, brought in his Battle Bot--The Piecemaker!

The Piecemaker has competed in several events about fifteen years ago, including "Robot Wars" over in London. The robot enjoyed mixed success, going against such fearsome competitors as Bunny Attack, Hannibal, and Techno Trousers.

Scott pulls off the cover to show the internal workings of The Piecemaker;
Jakob and Samy have eyes on the flamethrower!

Alec and Colby watch as Scott describes the
internal wiring, which was actually less complex
than the robots we will be building next month

The Piecemaker is controlled by a regular remote-controlled aircraft setup, which sends signals to the powerful wheelchair motors at the wheels, and also to the metal cutting disc on the front. Scott showed us a worn-out disc from previous competitions; the fuzzy debris from other robots was still stuck on the blade!

Scott takes The Piecemaker outside to fully demonstrate its destructive capacities!

The students were allowed to operate the robot... be assured that the rotary cutting
disc was disconnected first!

Scott attempted to light the flamethrower, but the wind just wouldn't cooperate...
too bad!
Low-res proof of former glory: The Piecemaker (middle right) goes head-to-head
with Bunny Attack (left)

This week, the members of the 11th/12th Grade group, Advanced Engineering, took a walking field trip to the nearby Santa Barbara Forge & Iron over on Gutierrez Street. The business is owned and operated by Dan and Andy Patterson, who are newly related by marriage to our own Mr Hurt. Sadly, two of our group of six were out sick, and they were missed!

Dan met us, and began by showing a few of the projects that he currently has on the boil, and how he uses Trimble SketchUp to plan his designs after taking the initial site measurements. Tys and Sarah Jane spent much time last year learning SketchUp, and Kylie and Caleb recently had their first exposure to the CAD program. It was gratifying to see the exact same software in action at a thriving Santa Barbara business just blocks away from the school.

Dan opened the tour by showing some SketchUp projects

Dan was also able to show us around the shop, which is filled wall to wall with fascinating industrial machinery. Workers busily hammered away at iron and steel, drawing it out into custom-made features destined for various local businesses and residences.

Tys, Sarah Jane, Kylie, and Caleb look on as Dan demonstrates the various
co-ordinate axes of the drill press/lathe

This particular piece is destined for a local museum, at which we hope our students
will soon have opportunities to volunteer... more on this later!

Sometimes you just gotta hammer away on
a good old-fashioned anvil

And sometimes you use a jet of energized plasma on a computer-controlled machine;
the students gratefully finished their tour with this huge piece of equipment

Many thanks to Dan and Andy and everyone at Santa Barbara Forge & Iron for their warm reception of our students. Their creative passion, combined with hands-on skills and applied mathematics, are an inspiring example for us. Thanks again also to Scott for bringing in The Piecemaker.

Stay tuned for more projects and field trips and guest speakers! The year is just getting started.

Wednesday, September 14, 2016

Advanced Engineering: Community Design Project

We're in the fourth week of school now, so it's a great time to unveil our Big Idea for the 2016-2017 school year. The Advanced Engineering group, comprising Tys, Aaron, Sarah Jane, Kylie, Jake, and Caleb, have been given a momentous task to accomplish.

From left: Jake, Caleb, Aaron, Tys, Mr Meadth, Kylie, Sarah Jane,
and a Pacific Gray Whale

Drum roll, please...

They will be working on a year-long project to design and construct a play structure for the Providence Lower Campus!

Most of these students already learned to do CAD last year, creating models of orphanages, Mars habitats, and small houses. This was all done from a purely "design" perspective, focused on aesthetics and interest alone.

Sarah Jane and Jake showing their CAD model for an African orphanage last year

By contrast, the point of this year's work is to understand structural engineering: materials science (just when will that piece of timber break?), loads and stresses (how much tensile stress is that chain carrying?), column behaviour (when will a long thin supporting column buckle?), and so much more.

So, after making a design that is interesting and aesthetically pleasing and fits its environment, the students will bring their new skills to bear on their structure, which will enable them to select material types, choose thicknesses, add triangular structures, etc. This will be far more math-and-physics based than last year's work.

But for now it's all fun and games. We've been researching nearby playgrounds...


...appreciating local artwork...


...performing structural tests on candidate materials...


...speaking on location with the all-important client, Mr. Knoles...


...getting inspiration...


...critiquing ideas...


...and getting it all down on paper.


This week also marks the submission of a grant to a local nonprofit to help fund this project. The students wrote this grant themselves, and will be waiting hopefully for the response. Stay posted for more updates on this exciting work!

(photos by Rodney Meadth and Tys vanZeyl)