Friday, October 30, 2020

Physics, Freshmen, Furniture... and a Grant Win!

There hasn't been a lot of action on this blog site so far this school year—but not because there aren't things worth writing home about! As you can imagine, I (Mr. Meadth) have been much busier on the ground each day with cleaning and supervision, let alone teaching the engineering class.

But some things are worth documenting and celebrating. So let's jump in!

1. Four New Freshmen

We took four new engineering students into the freshman class. A big welcome to Hunter, Abby, Teleios, and Eliana. These junior engineers are hitting the ground running, despite all the challenges. They are learning trigonometry before their time, taking baby steps into the world of computer-aided design (CAD), and just generally being awesome. Welcome, freshmen!

Hunter, Teleios, and Abby (Eliana couldn't make this
photo, but she's just as much a part of this group!)

2. College-Level Statics... From a Textbook

Despite my propensity to always design my own curriculum from the ground up, I tried something new this year: a textbook! It turns out this was the perfect year in which to do this, as it matched well to the statics studies that we've always done anyway. Don't be led astray by the name—Statics for Dummies—the lighthearted tone helps high schoolers get through those pesky equations. For those engineering parents out there, you'll find all of the fun you can handle in vector calculations, force couples, and free-body diagrams.



3. Independent Mode

This is a grand experiment, and one that we committed to from the start of the year. Can we commit to a full year of engineering studies in independent mode? Some would say that it's never been tried, but this is the year to come up with new solutions! Despite the absence of stimulating classroom discussions, this has allowed students to take seven classes plus engineering, and it allows students to watch at their own pace. Students have watched 18 videos so far this year, and responded with written assignments and discussion boards. They are now eagerly discussing their community design project in a shared Google Doc, which brings us to Number 4...

Acceleration sums in three dimension, anyone?
If you can't find the centroid of a composite area,
you just can't call yourself an engineer

4. Community Design Project

I'm so happy with how this project is rolling forward! We have two "clients", Mrs. Christa Jones on the San Roque campus and Mr. Gil Addison at PathPoint, who works with residents in wheelchairs. Our student teams are busily designing an adjustable standing desk for Mrs. Jones and an adjustable computer desk for Mr. Addison. Both of these designs are required to involve electrical/mechanical aspects, such as motorized lifts or built-in LED lighting. Once the student teams finalize their designs, complete with drawings and CAD models, I (Mr. Meadth) will be building their designs myself—in the interest of staying as contact-less as possible.



5. Lots of Publicity

We've received a surprising amount of national-level publicity lately. Our students use the CAD platform Onshape, and Onshape reached out to us to record a video and write a blog article. The video has been up for a over a month now, and the blog article will be published soon. Our Academy was also mentioned in another national publication by the American Institute of Aviation and Aeronautics (AIAA), Aerospace America, because we won a $500 grant to help build our remote-controlled aircraft.


6. Major Grant Win

Is it just me that believes in our outstanding Providence engineering program? Is it just the university lecturers who receive our already-highly-trained students? Am I just blowing my own horn over here? Apparently not! The Toshiba America Foundation decided that our second-semester robotics project was something worth funding, and we are pleased to announce that over $4,000 of the very latest in classroom robotics equipment will soon be arriving on campus. This will be put to use in our Mars Rover project, where different student teams will design, build, and code different components of one big vehicle. I'm looking forward to this one. Thanks, Toshiba!

One of the advanced Vex V5 sets: coming soon!

As always, stay posted for more exciting announcements. Our junior engineers are doing something very different, but making the most of it. I'm confident that their skills and experience will remain at the very highest level amongst similar programs in our area. Keep it up, students!

--Mr. Meadth


Monday, July 27, 2020

Designed, Built, Flown!

You can't choose the hand you're dealt, but you can play it to win every time.

Along with every one else around the globe, the Providence Engineering Academy was dealt a tough hand in March. Having worked so hard in the lead-up to the major capstone project—to design, build, and fly a powered tethered aircraft—being asked to complete the project from home was not the situation that anyone wanted. But in the spirit of problem-solving, our junior and senior engineers faced up to the challenge. After all, what is engineering all about if not solving problems?

Our last post on this project ended with the four teams designing various aircraft components using professional-grade CAD software. They had sent their designs to Mr. Meadth, who began to 3D print their fuselages and tails, cut their carbon fiber, and CNC mill their wooden wing ribs, all from the comfort (?) of his garage.

The garage workshop: where the magic happens!

Over the course of several weeks, each team's delivery bag in the garage began to pile higher and higher with these manufactured components, along with advanced electric motors, lightweight lithium batteries, tissue paper, and other bits and pieces. Every last one of these components had been accounted for in duplicate: in a virtual CAD model and a complex spreadsheet. The CAD model held the actual design for manufacture, visualization, assembly guarantee, and mass/center-of-gravity prediction. The spreadsheet calculated wing and tail lift, which in turn yielded a force and moment balance, and also a redundant center-of-gravity prediction. (Redundancy is not a negative word in aircraft engineering!)

Quick science lesson: the center of gravity (c.g.) is where the sum of all weight is located. In other words, it's the point at which you could balance the aircraft on your finger, or where you could hang it from a string. It is determined by the masses and locations of the individual components, and it was critical that our uncontrolled aircraft had the center of gravity forward of the wing's lift force. Without going into the deeper explanation, having the center of gravity as close to the nose as possible means that the aircraft will be self-correcting and stable as it flies. Try attaching a paperclip to the nose of your next paper aircraft and note the dramatic improvement! This is why we ran two separate c.g. calculations using two different method—we wanted to absolutely confirm before manufacture.

Fresh off the printer, ready for delivery!

Sam and Josh work on RUBYGEM, papering and
doping the wings

Mr. Meadth delivered each team's bag directly to their respective homes. Upon arrival, each team worked hard to assemble the aircraft. This involved inserting carbon fiber spars into 3D printed wing boxes, stringing the wooden ribs evenly along the spars, covering the ribs with tissue paper, and then applying dope (a kind of water-based glue) to the paper. The doped paper dries and hardens into a kind of thin shell. The various electronics components were also connected and secured, along with the tail and undercarriage (landing gear).

At the same time, the simple tethering system had to be designed and implemented. The wooden stand sits in the middle of the flight path, and a 3D printed bearing served as an anchor point for the tether line. The tether was then attached to the wingtip. Some of the aircraft needed a little more rigging to ensure that the centripetal force didn't rip the wingtip loose!

Fast forward to the big day. Mr. Meadth made a final decision to hold the test flights in the gym, instead of outside. The smooth floor would take one more variable out of the equation, and the enclosed space would keep out any stray gusts. When your plane only weighs about 2 pounds and floats on the breeze, a gentle wind can be your worst enemy!

Thanos steps on to the court!

First up to the plate was Nolan and Pedro. Their purple and grey monoplane had a planned weight of 800 grams (less than a liter of water). The wingspan was a fairly standard 1.06 meters (a bit more than 3 ft), with a conventional tail style and taildragger undercarriage. Mr. Meadth tied their aircraft to the tether as the excitement mounted, and Pedro took the first turn at the controls. A gentle increase on the electronic throttle, and the affectionately named Thanos rose up beautifully into the air! Nolan took a turn as well, and the team scored two successful take-offs and two successful landings—the ideal outcome!

Plan view of Thanos, taken from the CAD model


Next up was Madison and Alena. Their Airplane Baby was ready to take its first steps, with Alena at the helm. In various shades of baby blue, the 540 gram winged wonder stretched out at an impressive 1.2 meter span (about 4 ft). Their wing aspect ratio (the ratio of wingspan to chord length) was a very healthy 12, almost double that of some other teams. But would it fly?

Airplane Baby gets ready to roll!

The girls produced a set of plans for their
written report

Without a doubt! Both Madison and Alena toured the gym in a somewhat rollercoaster fashion, the tether line being stretched to its limit. We estimated just a couple of feet clearance between the aircraft and the walls—enough to make any pilot sweat a little! But after a safe landing, all was well.


And now a little math. Replaying the video, it looks like Airplane Baby took about 3.5 seconds to complete a lap. If the diameter of the circle was about equal to that of the basketball court (50 ft), then the radius of the circle was half that: 25 ft. The speed of the aircraft through the air is equal to distance over time; the circumference of the circle divided by the time to get around that circle.

Circumference = 2π × radius = 157 ft
Speed = distance/time = 157/3.5 = 45 ft/s

This was about 36% faster than their design speed of 33 ft/s, which only goes to show that their stable aircraft design works just as well under a variety of situations. (It may also mean that their wings weren't as effective at generating lift as theorized!)

Sam and Joshua took to the floor after that, with a slender red aircraft tied to the tether: RUBYGEM. With a planned mass of 440 grams (almost exactly one pound), this was the lightest plane on display. Their rectangular wing planform spanned 1.08 meters, and they planned to fly at only 8 meters per second (26 ft/s). A lighter aircraft does not need as much lift to stay in the air, and so for any given wing design, it can fly slower and still generate the force it needs.

RUBYGEM steps out in style


As RUBYGEM gracefully lifted into the air, it was obvious that she indeed favored a slower style of things. Completing each lap in almost 5 seconds, the flight speed can be calculated at 33 ft/s. This is also faster than their design speed, which reinforces the theory that perhaps there is more inefficiency in the design than our theory accounts for. Sounds like real life, all right!

After successful landings, Mr. Meadth made the decision to head outside with the fourth aircraft: Big Wing Boy. And boy, was it big! At over 2 meters (6.5 ft) span, this multi-colored monoplane was just too big to spread its wings indoors. It was also designed to fly a little slower, and was very light for its size: 800 grams.

Big Wing Boy, taken from the design report

There was, however, one significant issue: while the design looked good in the CAD model and spreadsheet, the greater spans and sizes meant the physical attachment of the parts was just that much more difficult. The sheer size tended to stress the wing root joints more, so extra tension lines were strung between wingtips to help hold everything together.

Being outdoors on the grassy field, the decision was also made to give the aircraft a running hand-held start, because the wheels get caught in the grass. Risky? Yes! Mr. Meadth held Big Wing Boy aloft and kicked off his shoes to get the best launch speed possible. Given that an Olympic runner travels at around the 10 m/s mark, finding the necessary design speed of 8 m/s would be a challenge!


Ben cranked the throttle to a healthy roar, and Mr. Meadth began to dash around the circle. With a final push into the air, B.W.B. lifted up into the great blue yonder where he belonged. All seemed well... and then the unthinkable! Video footage analysis confirms that the carbon fiber stick connecting the wings to the tail tore loose from the aerodynamic loads, and no plane can ever do well without that stabilizing influence. This principle was, in fact, one of the central pillars of the second semester!

The moment of horror as the tail comes loose!

The aircraft wanted to perform, but just couldn't remain aloft. It plowed into the grassy field after only a few seconds of genuine flight. A quick repair and a repeat attempt was launched shortly thereafter, but another half-lap was achieved with similar results—with more permanent destruction this time! There was no third flight.

At the end of the day, what did we learn?
  1. Challenges are there to be overcome. The project could have modified to be easier, simpler, more virtual, you name it. But that kind of logic doesn't get you into the history books, and doesn't give the same kind of satisfaction. Greater levels of determination can turn challenges into victory.
  2. Theory is useful, but doesn't account for everything. Math and physics equations and computer simulations are incredibly useful, and with high-level manufacturing can be a very good analogy of the intended outcome. But the fact is that our theoretical calculations didn't account for a great many factors. This makes it all the more important to create robust, stable designs. The aircraft didn't perform exactly as intended, but they did perform in the real world.
  3. Aircraft need firmly attached tails. You may want to check the welds next time you hop on board your next 737.
Congratulations to our eight aircraft engineers, and many blessings on the four seniors, now alumni: Ben, Todd, Alena, and Madison. You have completed something to be proud of!

Friday, May 22, 2020

Senior Spotlight: Alena Zeni


Alena Zeni is one of the many seniors worldwide whose last year of high school is looking quite different from what they expected. Prom has been canceled; Providence’s iconic “senior presentations” were carried out online; graduation will be a bit creative this year to say the least.

Alena Zeni, Class of 2020

Yet, while noting sadness over missed end-of-high-school memories with friends, Alena’s primary sentiment is excitement for the future—and her future is certainly bright! Alena was chosen to be an intern for NASA this summer, helping the Coast Guard design and build short-range search and rescue drones. This fall, Alena will begin her studies at Embry-Riddle Aeronautical University in Arizona, where she plans to double-major in Astronautical Engineering and Global Security & Intelligence. She hopes to eventually work for a company like NASA or as an intelligence analyst.

Alena (left) helps catch a wayward drone! (It was her
idea to use a sheet to catch it and thereby prevent crash damage.)

A student in the Providence Engineering Academy all four years of high school, it was actually an elective in junior high that cultivated Alena’s love of the subject. She admits, “If not for junior high engineering, I probably wouldn’t be where I am today!” Among her favorite memories of the high school Academy include building a Tensegrity ball (a structure made of beams and ropes in which no beams directly touch one another, but are held together by the tension in the ropes) and a hexacopter drone, affectionately named “Thiccarus” due to its broad dimensions. Alena spoke fondly of the drone, admitting that her class worked so long on the project that they personified the drone as their class “child.”

Madison, Alena, Todd, and Ben:
senior members of the Providence
Engineering Academy

A field trip to the Jet Propulsion Lab in Pasadena earlier this fall is where Alena definitively found her calling. Inspired by the work of JPL, Alena decided to forgo a mechanical engineering degree and pursue astronautical engineering instead.

Alena (upper right group) poses with her class at JPL

Alena’s senior project—a capstone experience required of all graduates of Providence that involves a research paper, professional presentation, and defense of a meaningful topic—is titled “Guy-ence and Men-gineering: Pushing Back Against Cultural Barriers for Women in STEM.” Alena gives credit to a “Women in STEM day” hosted at UCSB during her 9th grade year for raising her awareness of the gender gap in the STEM disciplines. Her interest in researching the reasons behind the divide developed throughout high school and became an obvious choice for her senior project.

Among many contributing factors for the gender gap in STEM fields, Alena cites gender-based micro-aggressions, stereotype threat, explicit and implicit gender-science biases, and the competitive, aggressive atmosphere where performance expectations are not conducive to work-life balance. To combat these challenges for women in STEM fields, Alena encourages companies to consider blind resumes in early hiring procedures, expand skills required to include stereotypical female strengths such as collaboration and teamwork, and actively ensure qualified women get deserved promotions based on merit. Alena brings her Christian worldview to her research, articulating man and woman’s equal ability to image their Creator. As image-bearers, men and women are both called to create solutions for problems that arise in the world.

Alena's and Madison's final project for the year

Alena's design for her aircraft fuselage successfully printed!

As Alena wraps up her senior year, her final project for the Engineering Academy involves designing a powered model aircraft with classmate and good friend Madison Malone. The duo are assembling their aircraft and planning on flight tests toward the end of May. Alena’s love for engineering is undeniably evident as she speaks with excitement to see her creation fly, citing many late nights and Zoom calls to navigate the design process in an unprecedented classroom setting.

Her final advice to younger students interested in studying engineering, math, or science? “Don’t give up on the math. It can get really, really hard… but once you have that moment where it all clicks and falls into place, it is so worth it.”

Monday, May 11, 2020

Design, Build, Fly!

Our students can't be together in person right now, but nothing is going to stop them finishing the capstone design/build/fly project for the 2019-2020 year. With digital tools in their hands and computer-controlled manufacturing equipment at the other end, our budding engineers, now sheltered in place, are experiencing the reality of a modern workflow. Even before the advent of COVID-19, many companies routinely collaborated from around the globe, producing advanced designs using international teams. Although not our first choice of preference, we're taking the challenge head-on!

Mr. Meadth teaching aircraft stability via Zoom

The first step for our skillful students was to learn the ins and outs of classic aerodynamics. In January, February, and March, the eight juniors and seniors studied airfoil behavior, lift and drag equations, and learned how to use weighted averages to find the center of gravity of a complex system. Our team learned the different parameters of airfoil design, and used virtual wind tunnel tests to predict just how those airfoils would respond in real life.

The virtual wind tunnel program XFoil: a classic
historical aerospace simulation! Note the cambered
airfoil shape at the bottom, with the yellow boundary
layer on top and the blue one below

Even more important was the notion of stability. What makes some physical systems stable, and others unstable? The incredible hexacopter drone that emerged in the first semester was inherently unstable, which means that it will rapidly flip and roll and fall out of the sky if the onboard computer-controlled gyroscopes were to stop doing their job. The gyroscopes sample the position and orientation of the drone dozens of times per second, and send minor corrections to the six motors, all without the pilot on the ground ever knowing it. Stable drone flight is an astounding human accomplishment, powered by calculus and implemented by technology, but it is not inherently physically stable.

On the other hand, the powered fixed-wing aircraft in this project must be physically stable. Tethered to a central post and flying continual circles, the aircraft will have only one remote-control channel controlling the power to the motor. There are no ailerons, elevators, rudder, or flaps. Without moveable control surfaces, the aircraft must be designed to constantly self-correct all by itself. If the nose dips down a little because of a gust of wind, it must automatically seek to find level again. If it rolls a little too much to one side, it needs to roll back again. The principles involved hold true for most common vehicles: cars, bicycles, even the caster wheels on supermarket carts.

Having mastered the physics involved, the students set about the difficult task of starting their design. No kits, no instructions, no fixed starting point! In teams of two, the students created a complicated spreadsheet filled with graphs and tables and physics equations, listing masses and locations and forces and moments. The students also designed a multi-part CAD model according to those numbers using the professional-grade online platform Onshape; ideally, the CAD model, the spreadsheet design, and the manufactured plane itself will end up as three matching representations of the same reality.

Pedro's and Nolan's aircraft in its complete form

The same aircraft in an exploded view

Mr. Meadth ordered in the necessary tools and materials for construction: carbon fiber bars and tubes, balsa wood, lithium-ion batteries, electronic speed controllers for the advanced motors, propellers, wheels, and filament for the 3D printer. These materials were fully paid for by a generous grant from AIAA, the American Institute of Aeronautics and Astronautics. AIAA believes strongly in encouraging the work done by K-12 schools in advancing aerospace education, and Providence School has received similar grants in the past.

The delivery of the critical
components arrives!

Through the COVID-19 distance learning experience, the four teams produced their designs without ever meeting in person with each other or the teacher. Because of Zoom lessons, shared spreadsheets, and the powerful collaborative nature of Onshape, this project didn't skip a beat. Mr. Meadth set up a manufacturing station in his own garage, and busily set to work producing what the students had designed. The CNC (computer numerical control) machine carved out flat balsawood ribs with exact length, thickness and camber dimensions, and the Raise3D 3D printer produced the three-dimensional components such as fuselages and tail.

The Providence Engineering Academy
manufacturing facility!


A completed wing rib from Ben and Todd, with
carbon fiber spar inserted


The vertical tail for Nolan's and Pedro's aircraft,
over nine hours in the making!

The huge 30-hour print of the fuselage/
wing box (lots of temporary support
material can still be seen
Ready for clean-up, delivery, and assembly! The
motor and one propeller option are in the background

Where to from here? The Advanced Engineering II students will receive deliveries of their manufactured pieces, to be assembled at home. Test flights, possible redesigns, and the final maiden voyages are scheduled to happen in late May—stay posted for the culmination of this exciting story!

Thursday, April 30, 2020

Architecture Competition 2020

(The following post, written by Anna Beebe, was intended to be published in March—and then COVID-19 happened! Forgive our tardiness... the Architecture Competition was one of the very last things the Providence Engineering Academy did in person this year and it was highly worthwhile!)

The students get ready for the day's instructions

On Tuesday, March 10th, fourteen Providence Engineering students—our largest group to date—attended a county-wide High School Design Competition hosted by the Architectural Foundation of Santa Barbara. Our students joined approximately 30 other students at 8am at Direct Relief's global headquarters in Santa Barbara while a parallel section of the competition was offered at the same time at a location in the Santa Ynez valley.

This competition has been held annually for the past 30 years, and Providence students have won awards in the competition in both 2018 and 2019.

Teacher Matt Eves prepared our students incredibly well. For the last three months, class time has been devoted to architectural study. Students have been learning how to use architectural drawing boards with t-squares and triangles, as well as how to draw to scale. Both of these skills were utilized in the competition, as students were engaged in designing floor plans, site plans, and elevation drawings.

On site, students were given a design challenge immediately upon entering the room. Historically, the Architectural Foundation has attempted to choose challenges that connect directly to current architectural challenges in Santa Barbara.

This year, the challenge was to design a “tiny house”—a fully-functional home that is typically less than 600 square feet, with some as small as 65 square feet. You may be familiar with the “tiny homes” that back up to the US101 North near the Salinas exit, one of several tiny-house projects in Santa Barbara born of a recent ordinance authorizing their construction in order to make use of unconventional plots of land.

Students were given a site plan that showed streets and a plot layout and were instructed to design a tiny house on it, and draw-to-scale some details including elevation and floor plan. While the students worked, professional architects circled the room acting as mentors and offering design advice.

Sophomore Kaitlyn Tang said of the competition, “There’s something about designing that is special. Although tasked to build a tiny house, there really was no ceiling to what we could do. It was so amazing to be able to design something from scratch with endless possibilities. I had such a fun experience and time flew by, but I think in the end, we all designed something that we were really proud of.”

Dozens of high schools from around Santa Barbara County
were represented at the design competition

Junior Joshua Frankenfield returned to the competition for his third year, having won past awards. He says of his experience, "I must say that the architecture competition is one of the highlights of the school year for me. The way it is set up gives the students leeway to solve the problem however they wish in the time period given, so long as it operates within the restraints. It is a true engineering experience within the realm of architecture."

We are incredibly proud of the hard work and creativity our Providence students demonstrated, and are so grateful for the opportunity they had to connect with architects in the city. For those who are interested in studying architecture, this experience will be a wonderful spring-board for their professional future! As sophomore James Loewen put it, "It has been a very fun experience regardless of winning or not!"

Friday, April 10, 2020

A Tour of JPL


(This is the eighth in a series of blog articles written by the Providence Engineering Academy students. Pedro in 11th grade reflects on his experience at the Jet Propulsion Lab in Pasadena on our class field trip earlier this year.)

“The trip was really inspiring way above expectations. I enjoyed the chance to see where they work, and the 2020 rover was a memory I will never forget.”

“It really re-awoke the third grade Nolan in me. The rover around Saturn replica was cool to see, it was a great experience, and I’m so glad I got the opportunity to go.”

These are the words Josh and Nolan stated about our class trip to the Jet Propulsion Laboratory (JPL). JPL was a fun and interesting experience, and in our tour we got to learn and see things that we’ve never seen before.

First off, we saw a video that was amazing to watch. This video showed us the gigantic size of the whole universe and taught us that most of it hasn’t been explored. It also showed some satellites and spacecraft that were launched into space, and we were able to look at smaller scaled models of these around the room.

Our host shows the various scale models of historical space probes

Next, we got to see the control room, which was full of screens and numbers. This is the room where they gather information from every spacecraft, rover, and satellite. It is also the place from which they controlled the landing of the Mars rover, Curiosity, in 2012—which we learned was a really terrifying seven minutes for these hard workers! 

The control center, from which every robotic space mission
has been monitored
Then, we got to see photos from one of the rovers on Mars. These photos had been taken just hours earlier and we got to see them on a screen!

After that, we got to see the construction of the 2020 Mars rover. Amazing! We learned that anyone that is eighteen or under can get their name applied on the 2020 rover.

The rover being constructed inside a "clean room"

Our final stop was the gift shop, which sold “space” ice cream, sweaters, and some cool toys for your kids. Overall, JPL was a fun and really cool experience for all of us.

Friday, March 27, 2020

Private vs. Government Space Programs

(This is the seventh in a series of blog articles written by the Providence Engineering Academy students. In this article, 12th-grade student Todd shares why privately-funded organizations may be a better choice for space exploration.)

Space travel. It’s been around since 1961 when the Soviets launched Yuri Gagarin into space. But who has been sending people into space here in the United States? For the longest time, the National Aeronautics and Space Administration (NASA) and Jet Propulsion Laboratories (JPL) were the sole authorities on spaceflight. That all changed when SpaceX, the first private space agency in the United States, was founded by Elon Musk in 2002. Since then, there have been 76 launches by SpaceX, and 26 launches by NASA.

But what is the difference between these two agencies? NASA is a public, government-owned organization and SpaceX is a private company that has not yet launched an IPO. So which organization takes a better approach?


Although NASA has a bigger history in the space travel industry, the real facts lie in the fundamentally different ways the two organizations are run. NASA is entirely funded by the government, so it gets its money from taxes and loans the government takes out. SpaceX is completely private, so its only money comes from its own profits and money from investors.

In my opinion, privately funded space organizations are the way to go because of the way they are funded. At the time of this writing, the United States national debt is around $22.8 trillion, and we have spent around $601 billion dollars on NASA so far. This money should be spent on other things such as working on shrinking the national deficit.


On the other hand, SpaceX has not gone public yet, so we do not know their current revenue and value. Though we do not know the numbers yet, we can say for sure that SpaceX does not contribute to the national debt, which is a very good thing.

One additional factor that sets the two groups apart is the ability to reuse rockets. SpaceX’s flagship rockets are the Falcon Heavys. The company boasts the ability to reuse its rockets after they have been recovered. This is a smart, cost-saving strategy that further proves that space travel should be privatized.

Regardless of the organization, one thing is for sure: space travel is here to stay, and the opportunities are ripe like never before.

Friday, March 13, 2020

The Flowers are Listening: Machines Inspired by Nature

(This is the sixth in a series of blog articles written by the Providence Engineering Academy students. In this article, 12th grade student Alena reflects on building machines inspired by God's incredible design found in His natural creation.)

Watch what you say because the flowers are listening.

Sounds like Alice in Wonderland, right? Okay, so maybe the flowers can’t listen to your conversation, but they do “listen.” Sound is so fundamental—birds, wind, the waves at the beach, cars driving by—that relying on it is essential to survival.

Researcher Lilach Hadany posed the question: what if flowers had this same necessary survival instinct? She concluded that they do and that they also respond to the sounds around them. Hadany and her team studied evening primroses (pictured) and discovered that when these flowers sense vibrations from bees’ wings they temporarily increase the concentration of sugar in their nectar. They concluded that it would be too much for the flower to produce this amount of sugar in the nectar at all times, so they respond to vibrations to know when to produce “the good stuff”.


Now picture this: twenty-four engineering students, sitting outside in the sun, 100% sure they had no idea about what today’s lesson will be. Then, Mr. Meadth hands out giant sticky notes. Confusion. Suddenly, Davis knows what’s going on (he’s been keeping up with recent science). Articles are handed out, read, and reread. It all makes sense now.

The engineering students are split into teams of two and asked to design a machine that can do the same things this flower can. The lesson of the day was all about how many machines today are based on nature, and how we can gain inspiration from looking at God’s creation around us. As the students started designing their own flower, they realized how complex the components would have to be.

Take a minute, and think of what you would need. Done? Cool. You may continue.

Let’s start at the top and work our way down. To replicate the “receiver” of the vibrations, you would need to replicate the petals. They were so precise that if you removed even one petal, the flowers didn’t respond to vibrations at all. You would also need a place for the sugar to be distributed from, as well as a computer to know how and when to change the sugar content, and by how much. You would need something connecting all of the sensors, the computer, the sugar center, and the power. There are so many components that we probably don’t even come close to listing them all here.

To replicate this phenomenon of nature in a machine is so complicated and precise, that it would take months or years to get even close to what nature can do. As we look at this flower as a microscopic portion of God’s creation and it’s vast complexity, we should step back and remember that we are His creation too, and we should find the goodness in everything.

(Find the full article on this amazing discovery here at National Geographic's website.)

Saturday, January 18, 2020

Coding Champs!

The following article appeared in the Santa Barbara News-Press on the 7th of January, written by Christian Whittle.



When Freshman Ruby Kilpper and sophomore Sydney Whited of the Providence School high school set out to develop an app for the Congressional App Challenge, they had a lot of ideas and not much time to choose one.

“We kept narrowing it down based on our skill level, what we thought we could do, and how much time we had,” said Sydney.

Eventually the two settled on Santa Barbara Volunteer Opportunities, a way for high schoolers to find volunteer opportunities in the area. And after a month of dedication their hard work paid off, winning the app challenge in Rep. Salud Carbajal’s 24th Congressional District.

Ruby and Sydney received the Congressional App Challenge award from Mr. Carbajal on Monday.

The annual coding competition for students was created to increase congressional awareness of computer science and STEM fields (science, technology, engineering and math).

Mr. Carbajal brought the two students to his Santa Barbara district office to honor their achievements and invite them to a reception at the House of Representatives in Washington, D.C.

“It’s a great opportunity to provide to our constituents and our young people, and it’s really cool to have young people from your district represented in Washington. We’re all very proud of you,” said Mr. Carbajal, D-Santa Barbara.

The pair are students in the Providence Engineering Academy. Launched in 2015, the academy, led by Rodney Meadth, serves as a springboard for students considering a career in math, science, or engineering disciplines. Participants enroll in specific classes from ninth through 12th grades.

Santa Barbara High School students won the challenge last year, but Providence stepped up the competition in 2019 by submitting eight projects.

“We’ve never gotten so many projects submitted from one school in particular, so obviously your teacher and your school had a lot to do with it and it just makes me feel really good about our future, the fact that you have a local school who’s really promoting coding,” Mr. Carbajal told the students.

The app Ruby and Sydney created for the competition, the Santa Barbara Volunteer Opportunities app, allows local nonprofits to post opportunities to serve, with details about age and time requirements, location, and the work needed from volunteers.

Users can use the app when they are interested in finding somewhere to serve. The pair wrote the app’s script in Java with 500 lines of code, and designed it mainly for use by high school students.

Sydney and Ruby were inspired to make the app by Providence’s annual day of service, in which students volunteer around the city, as well as Sydney’s experience volunteering with her mother for the Santa Barbara chapter of the National Charity League.

“I think it’s a great requirement to go out and serve your community, but sometimes it can be difficult to find opportunities to serve,” Ruby said.

The pair wanted to create a platform where students can reach out to organizations on their own to find different opportunities that work for their schedule and interests.

“We wanted to create an app that made the process easier and overall better for our community,” said Ruby.

“This was very innovative,” said Mr. Carbajal. “My staff and I, we went through them all, and yours was clearly at the top early on because it’s just so practical, and it’s so user friendly.”

Although they had some experience coding, it was the first time either of them had worked with Java. Sydney had tried coding in middle school and didn’t take to it, but this time around she and Ruby had a lot of fun. Both have been inspired to continue learning about coding as they think about college and the future.

With the limited time to come up with a concept and develop the app, Sydney and Ruby weren’t able to fit in every feature they wanted, like a search bar and map. Nevertheless, they’re proud of what they were able to accomplish.

The SBVO app is still in the development and testing stage and is not yet available for download, but Ruby and Sydney are considering finishing the project despite the Challenge having ended.

Established in 2015, the Congressional App Challenge is considered to be the most prestigious prize in student computer science, according to the CAC website.

Members of the House of Representatives host contests in their districts for middle and high school students, encouraging them to learn to code and inspiring them to pursue careers in computer science.

Participating House members each select a winning app from their districts, and each winning team is invited to showcase their winning app at the U.S. Capitol during the annual #HouseOfCode festival in the spring.

Since its inception, the CAC has inspired more than 14,000 students across 48 states to program an app. In 2019, 10,000 students registered for the competition, 2,177 created and submitted functioning apps, and 304 House members chose winners from their districts.

Sydney and Ruby will receive a $250 Amazon Web Service Credit. Their app and their names will be displayed on the Congressional App Challenge website. The House of Representatives reception will be the second time Sydney and Ruby have visited the Capitol, after an eighth-grade field trip to the city.

“Now you get to go back as winners!” said Mr. Carbajal.

email: cwhittle@newspress.com