Friday, May 17, 2019

Searching for Solutions: Search and Rescue Robot Challenge

(Our latest blog article comes courtesy of Joshua in the 10th Grade.  Thanks, Josh!)

In the event of an emergency, robots may be called upon to enter into areas which have been devastated by natural disaster. The thirteen students from the Foundations of Engineering II class split up into four groups to build such robots, and testing came after eight weeks of work and dedication!

The original CAD model of the obstacle course, constructed
over several weeks by our indefatigable teaching assistants,
seniors Josh and Claire

The testing included nine phases (any of which could be skipped) all while carrying a payload. The teams would go through two gates of different sizes, over a gravel pit, up onto platforms of varying heights of 50 and 100 mm, push a block with the mass of one kilogram, go across a chasm, and make their way up a 45° incline. At the end of the run, the robot would be required to drop off the payload. The driver for each team would first do this routine while watching from nearby, and then once again using only a first-person camera view.

Davis gets his team's robot up onto the 50 mm platform with
no worries at all

The first robot to test was the "Trapezoidal Tank”. This robot was built by Nolan, Davis, and Alan. They felt ready for the first trial of the course, but decided to skip the 45° incline. Everything ran smoothly until the payload drop at the very end. They realized something was wrong.

The payload mechanism’s motor came unplugged!

Davis, the driver, thought up an idea. The payload was resting on top of the robot. What if he just flipped the whole robot over? Using the tank’s "tail", he flipped the robot up onto its end and delivered the payload.

Although not able to climb the full 45 degree slope, with a slight
modification the Trapezoidal Tank was make it at 40 degrees

A moment of pure glory! Davis upends the entire robot and performs
the obligatory victory dance!

On the camera-only run, the course was successfully completed again with only one obstacle skipped.

Caleb taking things in his stride, as the long-legged robot effortlessly
clambers over the gravel pit obstacle

Caleb attempts to steer by camera only--
no easy feat! 

Pushing the one-kilogram block away, the package waiting to be
delivered is clearly seen on the right-hand side of the robot

This complex (and squeaky) maneuver involves a series of
high-torque gymnastic activities


Next up was “Daddy Long Legs,” a robot with motorized wheels attached to extended legs. It was built by Caleb, Sydney, and Zach. Caleb, the driver, slowly completed the run, also skipping the very difficult 45° incline. On the camera-only trial, the robot was not able to place the payload in the designated area.

Anaconda brings its bulk to bear on a one-kilogram block of wood

This monster robot leaps 100 mm platforms with
a single bound!


Next was “Anaconda”, built by Sam P., Isaiah, and Pedro. It’s most notable feature? The robot’s tracks could rotate all the way around to point in the opposite direction. Sam P. took the wheel, and on his first run, he only skipped the smaller gate. On the camera-only run, he made it through the same obstacles without any issues.

James steers the Iron Horse through both gates and up onto
the 100 mm platform

Finally, the "Iron Horse” entered. This robot was built by Sam K., James, Joshua, and Kaitlyn. The design was simple yet effective. However, the extra mechanism they had added to their robot at the last minute broke! It was designed to help them get up onto the two platforms. Fortunately, there was enough power available for it to slowly assist with the obstacle it was built for.

Charging over the gravel pit with a huge ground clearance

Shortly after, that extra mechanism fell off and so did the payload. In a lengthy and complicated series of maneuvers, James used the one-kilogram block to push the payload over into the designated area.

End of the road: the Iron Horse capsizes while trying to free its
jammed package (the small yellow catch was supposed to release
and allow the hinged door to fall)

On the camera-only run, the Iron Horse's payload wouldn’t release. James used the gravel pit to try to get the payload to come loose, but the robot flipped over. He attempted to flip the robot back over, but it tipped over on its side instead. This run was incomplete.

The lesson to be learned for these four groups? Each problem can be solved in many different ways, but some are more effective than others. In every problem you encounter, consider those many solutions and then choose the most effective one.

Friday, May 3, 2019

Field Trip to Peabody Stadium

After many months of trying, the Providence Engineering Academy was finally able to secure a field trip to see... well, a field! Peabody Stadium, an integral part of the sporting complex at Santa Barbara High School for almost 100 years, has been greatly in need of renewal for a range of reasons—regular flooding, surface maintenance, seating capability, ADA compliance—and our engineering students were given a sneak peek at the behind-the-scenes process!

Our own neighborhood! Peabody Stadium (old image) to the
upper left, and Providence School to the lower right

A quick walk across Canon Perdido Street brought the group to the construction trailers, where Mat Gradias from Kruger Bensen Ziemer Architects, Inc. met them and introduced them to some members of the construction and design team. Mat has been involved with the Santa Barbara ACE Mentor Program, which several of our students (Eva, Victor, and Seung) have attended for the past two years.

Mat showed the construction plans, and described to the group some of the challenges facing the team, from sourcing grants to managing city wastewater ducts to preserving the "look and feel" of the local neighborhood. The team's original completion date was April 2019, but is now projected for the middle of August.

Josh, Gabe, Victor, Ben, Todd, Colby, Eva, Alena, Claire, and
Madison facing north; behind is the new southern grandstand

There's a lot of mud and dust right now, but over the next few weeks there'll be seeing bright green artificial turf laid out. Regular flooding issues will be a thing of the past, with clever water management systems in the event of severe rainfall. Seating capacity will be greatly improved, and highly directional lighting and sound seeks to minimize light and noise pollution for the surrounding areas. The state-of-the-art track surface will be the only one of its kind for a hundred miles—a type of high-tech material that is known for producing world records.

The Engineering Academy was very grateful to Mat and the other presenters, and they're already excited to see the finished product!

Wednesday, April 3, 2019

Search and Rescue Robot Photos: Josh Guinto

One of the strengths of our Engineering Academy is the opportunity to assign older students to act as teaching assistants for the younger group. This year, we are privileged to have Josh and Claire, both seniors, working behind the scenes day in and day out. Josh and Claire take care of so many important things, freeing me up (Mr. Meadth) to focus on teaching and assisting students.

Following on from the highly successful robotic arm project, our current robotics challenge is to design and build a search and rescue robot. This idea has been widely explored by many universities and private companies. We are proud to have four separate teams, each developing a unique solution for a robot that can navigate a defined obstacle course and deliver a survival package to a person on the other end. Such a robot might be used in an earthquake scenario.

No more talk from me! Let me simply share some excellent photos taken by Josh (thanks once again!) We'll send out an update once this project is completed, so stay posted.

Sam and Pedro arrange the motors around a differential gearbox

Zach, Sydney, and Caleb working on some very secret plans!

Sam, Pedro, and Isaiah can't wait to add tracks to their creation!

Nolan and Alan looking for bugs in the program

Sydney gears up for safety!

Sam compares his custom 3D-printed pentagonal wheels as
James looks on

Kaitlyn and Josh hard at work writing lines of code

Davis completes some highly necessary modifications to his
team's tracked robot

Mr. Meadth undertakes repairs to one of Zach's electric motors

James reattaches the front wheels again

Alan considers his 3D-printed component: a rotating "jack" to
tilt their robot up and down

Wednesday, March 27, 2019

Gabe Farhadian: Honorable Mention

It's always a delight to see one of our seniors finish up with a personal best. On the court, in the classroom, and in the community, we love to celebrate special accomplishments. This past week, Engineering Academy member Gabe Farhadian did just that!

Gabe Farhadian: Honorable Mention

For the second time, Providence School sent a group of students to the High School Design Competition put on by the Architectural Foundation of Santa Barbara. The seven students—Gabe, Eva, Seung, Joshua, James, Sam, and Zach—drove with Mr. Meadth up to Direct Relief's headquarters in Goleta (a gorgeous modern building in and of itself, if any extra inspiration was needed!). Armed to the teeth with T-squares, triangles, architectural scale rules, and custom-built drawing boards, the enthusiastic students listened carefully to the instructions for a particularly unique challenge.

The competition organizers gave everyone a large scale map of the State Street Theatre District, and described how they would need to redesign part of Victoria Street to become a pedestrian paseo, complete with apartments, public transport connections, and landscape gardening. The idea for this competition came from actual professional charrettes that took place in Santa Barbara not long ago, and is in keeping with possible future plans for that area.

All seven students took to the challenge with gusto. Those who participated last year already knew that six hours to work would not be enough, so they charged in and started drawing. Only a combination of creativity and technical drawing skill could succeed in the task, and we'd like to think our Providence Engineering students have a good measure of both!

Gabe's complete set of drawings: a site map of the Theatre District,
a floor plan of an apartment, and various other details

The results came in the next day, and Gabe was listed as one of the top twelve finalists! (Both he and Joshua achieved this same honor last year, and had presented their designs to a panel of judges at the Alisal Guest Ranch in Santa Ynez.) This year, Gabe would head out to Dunn School in Los Olivos to talk through his design with the panel of experts.

Gabe (right) stands proudly with the top five

Gabe was first in line to present, with his family standing proudly by (Gabe's mother, Katherine, is a local landscape architect). At the close of the event, he and one other student from Dunn School were awarded an honorable mention alongside the winners, who came from Laguna Blanca, Dos Pueblos, and Santa Ynez. Well done!

In the 2019-2020 school year, the younger section of the Providence Engineering Academy will spend a significant part of their time on architectural studies. Drawing to scale in plan and elevation, finding creative solutions in teams and as individuals, and using CAD software to represent ideas—there's so much to look forward to as we seek to "inspire and equip" students to act as "imitators of a creative God."

Wednesday, January 23, 2019

When Things Go Wrong, Could You Lend Me a Hand?

There's a great deal of discussion right now in educational circles about the positive benefits of failure. You don't have to look far to find TED talks, psychological reviews, and blog articles on why it's okay--and even beneficial--to fail. Failure, we read, makes us stronger, fights against complacency, and recommits us to our goals. The warnings are shouted loudly: Parents! Don't shield your kids from failure! Our own faculty member, Carri Svoboda, shared an article earlier this year about why women in particular might be afraid to fail.

The Foundations of Engineering II class in the Providence Engineering Academy were recently given a new project to wrestle with: design and build a robotic prosthetic arm. Using metal motors and controls for the forearm frame, they then had to 3D print a functional palm, fingers, and thumb. No instructions, and nothing off-the-shelf. Oh, and with one more twist--the entire thing was made double size.

James and Zach prepare the Pink Team's hand

Isaiah and Kaitlyn working on the finishing touches

So what happens when you give a room full of budding engineers a bunch of robotics parts and computers and a 3D printer? Well, for one, a lot of failure. Dead ends and broken components are commonplace. The line of code that worked yesterday doesn't work today. The team member that needed to design their part in time just doesn't. Control wires break. Batteries die. Entropy seems to work harder than its usual self.

And that's okay!

Davis shows Alan his giant metal forearm; the green boxes down
the side are the motors to control the 3D-printed fingers

The teams worked hard for seven weeks. During this time, they also visited PathPoint, a nearby organization dedicated to working with those needing assistive technology--the original inspiration for this robotic limb project. The direct experience with those who daily use technology to overcome their difficulties was very moving.

The whole group visiting PathPoint, non-profit working here in
Santa Barbara with those needing assistive technology

When all was completed, the four teams loaded up into the school vans, and headed over to the San Roque campus. Their giant articulated hands waved a cheery hello to cars driving by, fingers flexing and twitching in eerie mimicry.

Pedro shows the Yellow Team's code to a
Lower School student

James checks the workings of his pink articulated fingers

The class presented their designs to the 3rd, 4th, 5th, and 6th Grades across two days. On the first day, failure was the name of the game, as every team experienced the frustration of things going wrong. To name just a few of the dozens of problems:
  • A control line connecting a motor to a finger broke or came untied.
  • A stop keeping a finger from bending backward broke away.
  • An elastic band returning the finger to neutral position broke.
  • A remote control, necessary for demonstration, would not "pair" with the onboard computer.
  • Another remote control was left behind in the engineering classroom!

Nolan, chief coding specialist for the
White Team

A myriad of challenges--yes! More importantly, how did the students respond?
  • They switched to manual operation instead of motor-controlled.
  • They took extra time to talk to their elementary-aged guests about 3D printing and robots.
  • They used tape and scrap pieces to rebuild a finger stop.
  • They retied control lines, anchoring them with bolts and washers.
  • They avoided focusing on the problems, and drew their audience's attention to what was working.
Our 5th Grade teacher, Mrs. Suleiman, shared her highlight of the experience: "Hearing the students talk about the 'failures' that happened as they were designing the hands, and watching them deal with problems that occurred during their demonstration."

Lower School students take a turn wiggling the giant fingers
back and forth with the remote control

The students themselves reflected on this very same idea a few days later:

Pedro: "There will always be failure. Failure is good. You learn from it."

Zach: "Perhaps it is not our mistakes that are the true failures, but the ways that we handle our mistakes that are."

Alan: "The point of this isn't about how many failures we have, but how we deal with them."

Isaiah: "All this goes to say that every problem has a solution. You just have to be willing to persevere."

And persevere they did. On the second day of presenting, most of the kinks had been worked out. With smiles on their faces, our 9th and 10th Graders talked at length about their coding and CAD. The elementary students were able to take turns at the controls and wiggle those giant fingers back and forth. What a joy to see older students inspiring the younger ones with warmth and kindness!

Nolan helps our Lower School students
operate the arm

Our closing thoughts come from Sydney (9th Grader), who wrote some powerfully encouraging thoughts for all of us:

"I know that even in my academic journey at Providence, I have failed many times... This seems like the world can end, yet once you rise up and decide to learn from those failures, you really do learn the most... Through the project of making a robotic hand, I understand that failing is normal and is bound to happen at some point... I have learned that I need a team or a group who can help me when I fail. I need to give myself grace when I do fail... I am grateful for this experience and the hand that was our outcome, even if it was losing a few nuts and bolts by the end. Great work, team!"

Saturday, December 1, 2018

Tension + Integrity = Tensegrity

The Providence Engineering Academy seeks every year to put skills to use for the benefit of the community. From designing playground equipment to running science lessons, "we have an obligation to turn our skills outward to the world around us; we learn not for our own sakes" (quoted from the Engineering Academy application).

This year, the Advanced Engineering I students took on a challenge from our very own fitness guru, Scott Mitchell. Mr. Mitchell, who teaches middle school P.E. and runs our outdoor education program, is passionate about his craft. He wants students to understand the human body, in terms of both structure and motion. Mr. Mitchell has long used tensegrity structures as an analogy to help students visualize these principles.

What's a tensegrity structure, you ask? While a formal definition is somewhat elusive, you know it when you see it. Popularized by the architect Buckmister Fuller and his student, sculptor Kenneth Snelson, these structures feature "compression members floating in a sea of tension." Still confused?

Here's an animated GIF from Wikipedia's page:



The engineering class began with some small models, using elastic bands for the tension elements and wooden dowels for the compression struts.

Victor with the most simple of all tensegrity structures: three sticks
not touching
Victor and Todd with a six-member icosahedron
Josh finds a new use for the 12-stick version

As simple as these look, they take a great deal of effort to plan and assemble. But this was not the end goal; our class aimed to build a giant version of the icosahedron, with compression members 8 feet long!

Attempt 1:

A lot of knots tied to create 24 rope members. Attached lag bolts to 20 lb beams. Got it together and realized that everything was way too loose. Too much sag. Took it apart.

Alena carefully loops the non-slip knot over the bolt
Ben gets those bolts secured
Inital success and exuberance, but everything is far too loose

Attempt 2:

All rope connections shortened by 5 inches to tighten things up.  Unfortunate result: humanly impossible to pull together. Mr. Mitchell attempted to complete the final connections under great duress. Failure, bent bolts, and an abandoned attempt.



Attempt 3:

Straightened out bolts. Loosened all rope lengths by 2 inches. Realized that we can do this the easy way, working with the structure and not against it. Beams held in different orientation. Pulled it all together, but some bolts bent again. Much tighter, much easier, good result!

Colby and Todd compare the 8-foot version to the 12-inch!

Attempt 4:

Practice makes perfect! Rechecked all ropes, and found a few that were too long. Replaced all bolts with thicker ones twice as strong in bending. Worked in new orientation and got it together in under 10 minutes! (Compare this video to the last.)


Mr. Meadth tests it out before anyone else--in the name of safety,
of course!

Todd climbs inside once everything is approved

Eva's turn!
In case it's not clear from the pictures and videos alone, it has to be emphasized that none of the wooden beams you see are touching each other. Each of them is "floating in a sea of tension", held in place by the 24 ropes. This is despite the fact that the entire structure weighs about 160 lb (73 kg).

Here's another interesting observation: in the interest of safety, we strapped a force gauge to the ropes, and measured 150 lb of tension. (These ropes are rated up to 300 lb, so no problem!) But when Mr. Meadth climbed up on top, weighing about 155 lb himself, the rope tension only increased to 190 lb. How fascinating that 155 lb of live weight does not increase the rope tensions by that amount.

In fact, three people at one time were able to climb up on the structure (totalling more than 300 lb), but the max load reading never exceeded 250 lb, with no evidence of any structural problems.

It's stable, folks! It beautifully and naturally distributes extra load all around to find equilibrium, much like the human body. Even as it moves, it naturally corrects, distorts, and stabilizes. Watch Todd roll a few feet in the following video.


Needless to say, Mr. Mitchell was delighted with the outcome, and brought his middle school P.E. students over to see, touch, and feel its dynamic responses. He taught them that the wooden beams are analagous to our bones, and the tensioned ropes are like our ligaments and tendons and muscles. Inspired by the work of Anatomy Trains, it's easy to see what happens when our bodies are injured or out of alignment.

Great work, students! Keep on dreaming, designing, calculating, and serving others! Please share this article freely with friends and family.

A good day's work!